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Data Summary

= Cassini VIMS data are consistent
with migrating H,O adsorbed to
colder parts of lunar surface
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Data Summary

Chandrayaan-1 M3 data consistent with H,O adsorbed on
mid-high latitude regions of lunar surface

= Unclear in McCord et al., 2011 if 3 ym band exists at
low latitude near the terminator in M3 data

= Similar to Cassini, show decreased band depth on
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Data Summary
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EPOXI data indicate a change in band depth with incidence angle

Interesting to note that the Moon was likely in the Earth’s
magnetotail for 2"d observation (on June 9, 2009)
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Data Summary

=See Amanda Hendrix’s talk at 9:45 today

= Water absorption edge exists in FUV spectrum at 165 nm

= LRO LAMP data are consistent with a latitudinal dependence on
the band strength of hydration (greater strength at higher latitude)

= Within a latitude band, there is a dependence of band strength on
beta angle (minimum strength at $=0°), especially at low latitude
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Step 1—Solar Wind Implantation
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Solar Wind (SW) Delivery Rate
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Diurnal Changes—Solar Wind Limits

= Changes equivalent to ~100 yrs. worth of solar wind on a
diurnal basis would be required to produce an
observable diurnal signal

= This rules out direct implantation of solar wind to
explain the variations in band depth with local time

= Photometric effects may still produce a change in
band depth with local time

= Migration may still produce a diurnal change in band
depth
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Steady state concentration, diffusing OH

OH concentration (by weight)
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Migrating Flux, 10% efficiency
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Step 2-Migrating Flux

= Monte Carlo model of
migration pattern of H,O

= Each particle takes an 0 B E— ”,
average of 30 hops—boosts
flux

= Migration redistributes _ :
particles to higher solar incident Flox (N e
Zenith angles Polar View, 60-90° Latitude

= Still have the peak flux at the
equator '
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Step 3-Surface Residence
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Diffusing and Migrating
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Conclusions—OH

= Incident flux competes with diffusion rate to determine
the steady state concentration of OH in the lunar regolith

= Where diffusion is slower than a lunation, a buildup
can occur and the density is pretty flat diurnally

= Where diffusion is faster than a lunation, some buildup

can occur near the terminator, diurnal changes in
concentration would occur

= Solar wind does not provide sufficient source of H to
produce observable diurnal variation in OH
concentration
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Conclusions—H,0

= Migrating water vapor would accumulate on the surface
= Simulations reproduce latitudinal/diurnal distribution
= Dayside residence determined by sublimation

= Nightside residence determined by photon stimulated
desorption

= Increase in dayside residence time needed to bring
model in agreement with observations, both to get
density high enough and to suppress dawn
enhancement
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Diffusion Simulations

= Varied diffusion parameters 10000.0 f—————T—————T—————————T——————
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= Regions where magnetic anomalies exist demonstrate
interesting characteristics:
= High albedo swirls
= Proton reflection (Saito et al., 2008)
= ENA void (Wieser et al., 2009)
= Low absorption at 2.8 ym (Kramer et al., 2011)

= Consistent with reduced maturity caused by magnetic
fields diverting the incident solar wind flux
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Latitudinal Changes—Solar Wind Limits

= Time to reach saturation is longer at high latitude than
low latitude

= Temperature is colder at high latitude

= Perhaps a limiting process in the OH
concentration is temperature-dependent

= Diffusion
= Adsorption
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Step 1-Solar Wind Implantation

. high energy solar wind low energy low energy
- SOIar Wlnd pl’OtOI‘IS are one release _ plrotor(lj release release
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= Radiation damages lattice . e %
= Hydroxyl formation ® ® ® 0
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turnover time e
= Perhaps there are two ® ol .o

components, a physisorbed
H,O and a chemisorbed OH.
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10-1000 ppm OH—Solar Wind Limits
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= Lab indications are that saturation

levels achieved for fluence of 1018
p*/cm?2 (Managadze et al., 2011;
Blanford et al., 1986)

= Achieved in ~1000 yr. at equator

Equatorial regolith samples
(Apollo samples) contain
implanted solar wind elements

= Concentration is surface
correlated

= Saturation level is 50-100 ppm H
= composition dependent

= I[f His in form of OH, this is
equivalent to 850-1700 ppm
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